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1 Introduction 

The aim of deliverable D3.7 is to compare pure machine learning approaches with novel hybrid 

approaches for soil organic carbon (SOC) modelling. In soil science, the idea of bringing together 

the data-adaptiveness of machine learning and process-based understanding has been discussed 

at least since 2002. At that time, Minasny and McBratney (2002) suggested learning the 

parameters of a process-based soil water retention curve function with a neural network. Recent 

technical and methodological advances, namely differentiable programming, have now made it 

possible to efficiently fuse machine learning with process-based modelling (Reichstein et al., 

2019). With differentiable programming the gradient of a loss function with respect to model 

parameters can be easily calculated which allows the efficient optimization of deep learning models 

with thousands or even millions of parameters. Minasny and McBratney (2002), for example, had 

to resort to non-differentiable fine-tuning rather than today’s state-of-the-art differentiable modelling 

to train their hybrid soil-water retention curve model. Since then, hybrid modelling in soil science  

(Minasny et al., 2024; Tao et al., 2023) and in environmental science in general (Kraft, Jung, 

Körner, Koirala, & Reichstein, 2021; Reichstein et al., 2019; Tsai et al., 2021) has become one of 

the fastest-growing fields of research, in part due to the widespread access to differentiable 

machine learning frameworks such as PyTorch or JAX, and differentiable programming languages 

such as Julia. Minasny et al. (2024) highlighted that digital soil mapping can benefit from hybrid 

models, or “soil-science informed machine learning” as they call it. Digital soil mapping is the 

process of combining field or site measurements of soil variables with spatial covariates to learn 

the spatial drivers of these soil variables (McBratney, Mendonça Santos, & Minasny, 2003). The 

trained model can then be used to build soil maps using maps of the spatial covariates. 

In this context, digital soil mapping provides a particularly relevant application domain for hybrid 

models. Digital soil mapping typically operates in a small- to medium-data regime, rather than the 

“big data” setting of many classical machine-learning applications. In this setting, including sources 

of knowledge beyond the data itself can increase the robustness and domain of applicability of 

models. Process-based components can help to extrapolate to new temperature, moisture, or 

productivity regimes by encoding well-established, theory-based relationships. This is particularly 

relevant under global change scenarios, where models are routinely applied outside the range of 

historical observations. 
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Within carbon-cycle modelling, SOC remains one of the most data-limited components. Vegetation 

biomass has been successfully derived on large swaths of the earth by using allometry and remote 

sensing observations that have recently put into question the large, proposed land carbon sink 

(Bar-On et al., 2025). Eddy covariance flux-towers networks in the EU provide detailed 

measurements of the carbon balance of ecosystems. Soil organic carbon measurements in the EU 

benefit from a comparatively good sampling density at the continental scale, thanks to coordinated 

campaigns such as LUCAS. However, they are still temporally sparse and cannot match the 

process understanding we obtain from half-hourly eddy-covariance fluxes. 

To show what benefits hybrid modelling can bring to field of digital soil mapping, we developed a 

general-purpose hybrid modelling framework in the programming language Julia. While the focus 

of this work is hybrid SOC modelling, we designed our hybrid modelling framework EasyHybrid.jl 

(https://github.com/EarthyScience/EasyHybrid.jl; https://zenodo.org/records/17794983) to be more 

generally applicable. It can also be linked to other components of the ecosystem carbon balance 

and digital soil mapping that depend on SOC. For example, it can be used to model how SOC 

affects soil porosity, bulk density, or soil water retention. Throughout this report, we focus on the 

potential of hybrid approaches for SOC modelling. Additionally, we show how hybrid modelling can 

lead to more integrative SOC modelling by linking to other aspects of soil health such as porosity 

and soil water retention. We start by introducing our design choices for EasyHybrid.jl and show 

how it can serve as an easy entry point for hybrid models within the digital soil mapping field. 

In summary, this deliverable compares pure machine learning and hybrid models for SOC, 

introduces the EasyHybrid.jl framework, and evaluates how hybrid approaches can support 

integrative soil health modelling under data limitations and global change.  

2 Data 

This analysis used only LUCAS soil data from the 2018 campaign restricted to topsoil samples 

from 0–20 cm depth (Orgiazzi, Ballabio, Panagos, Jones, & Fernández-Ugalde, 2018). For each 

location we used SOC (g/kg), the volumetric coarse fragment content CF (fraction, unitless, 

between 0 and 1), and the fine-earth bulk density BD (g/cm³). Where all three variables were 

available, SOC density (kg/m³) was calculated as:  

SOC density =  SOC content ⋅  BD ⋅  (1 −  CF). 

https://github.com/EarthyScience/EasyHybrid.jl
https://zenodo.org/records/17794983
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After discarding records that lacked the required covariates, 16,743 of the original 19,036 

measurements remained. All 16,743 have SOC density; among these, 5,194 also contain CF and 

BD. Where BD was not available, we used the bulk density pedotransfer function of Tao et al. 

(2023). Climatic and remote-sensing covariates followed the covariate stack used within WP5 

(Tian, Consoli, et al., 2025; Tian, De Bruin, et al., 2025). In brief, climatic predictors were derived 

from the CHELSA v2.1 climate time-series (Karger et al., 2017), using a subset of climatic and 

bioclimatic variables at 1 kilometre-scale resolution. Remote-sensing predictors are based on the 

Landsat Analysis-Ready Data version 2 (ARD V2) developed by the GLAD group at University of 

Maryland. For details on preprocessing and variable selection, we refer to the two original papers 

(Tian, Consoli, et al., 2025; Tian, De Bruin, et al., 2025). Particulate organic carbon (POC) and 

mineral-associated organic carbon (MOC) data are taken from two studies led or co-led by JRC 

(Breure et al., 2025; Cotrufo, Ranalli, Haddix, Six, & Lugato, 2019). In these studies, a subset of 

LUCAS samples was physically fractionated into particulate and mineral-associated fractions, and 

these measurements were then used to calibrate Vis–NIR spectroscopy models that predict POC 

and MOC for the wider LUCAS network. Vis–NIR (visible–near infrared) spectroscopy is a non-

destructive analytical technique that relates soil reflectance in the visible and near-infrared 

wavelength range to laboratory-measured soil properties. In our analysis, we combined measured 

size fractions from the calibration set with Vis–NIR-derived estimates of POC and MOC. Microbial 

biomass data were from Smith et al. (2021). The POC, MOC and microbial biomass carbon (MBC) 

data were merged with the original SOC dataset, which did not contain SOC fractions or MBC. For 

the neural network, all covariates were standardised (z-transformed) to zero mean and unit 

variance before training. The final covariate set consisted of 168 individual covariates (we did not 

use any of the categorical variables from the original stack). 
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3 Pure machine-learning benchmark for soil organic carbon, 

carbon fractions and microbial biomass carbon 

3.1 Neural network architecture for multi-task SOC modelling 

Figure 1 shows a classical machine-learning architecture for a multi-task problem. Predictors 𝑋 are 

the inputs to a neural network that has four output nodes for SOC, MOC, POC, and MBC. In digital 

soil mapping, regression problems are often set up with single-output algorithms, typically random 

forests, although multi-output versions exist. One could hypothesize that multi-output setups 

achieve better performance, since relationships between different outputs can be shared. In reality, 

however, very few studies in digital soil mapping use multi-output algorithms. 

 

Figure 1 Conventional neural network with 𝑥𝑖 covariates/features as input and four output nodes – 

predicted SOĈ (soil organic carbon), MOĈ (mineral-associated organic carbon), POĈ (particulate 

organic carbon), and  MBĈ (microbial biomass carbon). The loss function aggregates the 
discrepancies between predictions and observations. The gradients of the loss with respect to the 
parameters are passed backwards through the neural network, telling the optimizer how to adjust 
each parameter. 
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Formally, we denote the neural network by 𝜃NN and write 

𝑦̂ = 𝜃NN(𝑋), 

 

where 𝑦̂ is a vector with four components (SOC, MOC, POC, MBC). Neural networks can be 

viewed as a sequence of layers that are chained together, for example a chain of dense layers that 

form a classical multilayer perceptron: 

𝑦̂ = 𝜃NN(𝑋) = Chain(𝐷1, … , 𝐷𝑁), 

 

where 𝐷1, … , 𝐷𝑁 are 𝑁 dense layers. In the pure machine-learning benchmark, the last dense layer 

directly outputs the four target variables. 

In this deliverable, the multi-task neural network serves as the pure machine-learning benchmark 

against which we compare the hybrid model (section 4). 

3.2 Loss function: KGE-based multi-task learning 

Critical for multi-task learning is the definition of the loss function, since multiple output losses must 

be combined into one composite loss. In this report, we used 1 − KGE, the Kling–Gupta efficiency, 

as the loss function for SOC, MOC, POC, and MBC. The KGE combines correlation, bias and 

variability into a single performance metric and is commonly used in hydrological modelling (Gupta, 

Kling, Yilmaz, & Martinez, 2009). We define KGE as 

KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2, 

 

where 𝑟 is the Pearson correlation coefficient between observed and predicted values, 𝛼 =

𝜎pred/𝜎obs is the ratio of standard deviations, and 𝛽 = 𝜇pred/𝜇obs is the ratio of means. KGE thus 

uses the Euclidean distance from the ideal point to summarise three aspects of model 

performance: how well temporal or spatial patterns (here: spatial) are represented (via 𝑟), the bias 

of the model (via 𝛽), and how well the variability of the dataset is matched (via 𝛼). The KGE-based 

loss has the convenient property that it is dimensionless. 
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Concretely, we computed KGE separately for SOC, MOC, POC, and MBC, convert each to a loss 

via 1 − KGE, and minimised the mean of these four losses during training. This has the additional 

benefit that the composite loss remains interpretable, so that one can judge at a glance how well 

the model is performing. 

3.3 Multi-task neural network for SOC, MOC, POC and MBC 

As a pure machine-learning baseline, we implemented a multi-task neural network that predicts 

four soil variables simultaneously: SOC, MOC, POC and MBC. The network takes a set of 

predictor variables (see section 2) as input and outputs the four targets in a single forward pass. 

The network architecture consisted of an input normalisation, followed by three hidden layers with 

decreasing width and dropout for regularisation. Concretely, we used fully connected layers with 

256, 128, 64 and 32 units, each followed by a sigmoid activation, and apply a dropout rate of 0.3 

after the first three hidden layers. A final dense layer mapped from 32 hidden units to the four 

output nodes (SOC, MOC, POC, MBC). No explicit global or mechanistic parameters were used; 

all learnable parameters belonged to the neural network. 

The model was trained using the RMSProp optimiser with a learning rate of 0.01, a batch size of 

2048, and a maximum of 1000 epochs. We employed early stopping with a patience of 100 

epochs. As loss function we used the KGE-based multi-task loss described in section 2.2: for each 

target variable, the Kling–Gupta efficiency (KGE) was computed, converted to a loss via 1 − KGE, 

and the mean loss across the four targets was minimised. During training, observations were 

shuffled, and additional diagnostic metrics (including 𝛼, 𝛽, and Pearson correlation reported in 

Figure 2) were tracked to characterise model performance. 

In Figure 2, we show scatterplots of the performance for the training (train) and validation (val) 

sets. We report performance for both, even though we are primarily interested in validation 

performance; here, profiles are split into 80% for training and 20% for validation/test. We focus on 

the discrepancy between training and validation metrics to check whether some datasets suffer 

from overfitting, especially datasets with fewer observations. However, we see that the largest 

discrepancy between training KGE (0.89) and validation KGE (0.25) exists for the data stream with 

the fewest points, MBC. The neural network was clearly overfitted on this small dataset of N = 331 

that the optimizer sees more often than the large SOC training dataset with N = 11610 (KGE_train 

= 0.74 and KGE_val = 0.6). Model performance for the SOC fractions MOC and POC lay between 
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these two extremes. Overall, this highlights the problems of multi-task learning on data streams 

with different numbers of observations. More advanced techniques such as Kendall’s uncertainty 

weighting between data streams may remedy this problem (Kendall, Gal, & Cipolla, 2018). 

 

Figure 2. Training and validation for a pure neural network in a multi-task setup. Performance of 
the hybrid model in training (upper) and validation (lower) for SOC, MOC, MBC and POC. KGE 
(Kling-Gupta efficiency) measures model performance as the Euclidean distance of three 
components - correlation r, variability ratio α, and bias ratio β - from the ideal point. 
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4 Hybrid soil organic carbon model and EasyHybrid.jl 

framework 

4.1 Motivation and previous work (Tao et al., 2023) 

Tao et al. (2023) is one of the more prominent recent examples of progress towards integrative 

hybrid modelling of SOC. In that publication, the authors calibrated the parameters of a microbial-

explicit SOC model profile by profile from the World Soil Information Service database (Batjes, 

Ribeiro, & Van Oostrum, 2020). These profile-by-profile parameters were then learned with a 

neural network for global upscaling. 

This approach had a couple of shortcomings: (1) due to the profile-by-profile calibration, the 

process-based model was generally overparameterized; (2) the upscaling of the profile-by-profile 

parameters was consequently an upscaling of under-constrained parameters; and (3) the 

mechanistic model was flawed insofar as the major pool in the model was not dependent on litter 

inputs in its steady state (He et al., 2024). 

Using Tao et al. (2023) as the state-of-the-art starting point, we improved both the mechanistic 

SOC model and the parameter-learning strategy. These changes result in an end-to-end hybrid 

model in our implementation. 

4.2 Process-based SOC model and temperature sensitivity 

Figure 3 illustrates the mechanistic model we implemented and tested as the last layer in the 

hybrid model. The model is based on the formulation by K. Georgiou, Abramoff, Harte, Riley, and 

Torn (2017) and is, in essence, also the pool structure that was used in Tao et al. (2023). However, 

we used a modified version that includes two key changes: (1) we changed the microbial turnover 

term from a linear dependence on microbial biomass (𝑘 ⋅ MBC) to a density-dependent, quadratic 

form (𝑘 ⋅ MBC2), restoring the dependence of carbon stocks on litter inputs in steady state (He et 

al., 2024). (2) Compared to Tao et al. (2023), we also used the K. Georgiou et al. (2017) 

formulation for the formation of MOC via a Langmuir sorption approach. The Langmuir formulation 

has the property that it defines an upper limit, a capacity for MOC formation, 𝑄max. This formulation 

was chosen as an attempt to derive 𝑄max values equivalent to the ones calculated empirically via 

boundary/quantile regression (Beare et al., 2014; Feng, Plante, & Six, 2013; Katerina Georgiou et 
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al., 2022). This can also be seen as a test of whether we need an explicit 𝑄max formulation in 

process-based models. It also helps to assess the importance of this parameter. 

 

Figure 3: Five-pool microbial model with formation of mineral-associated organic carbon MOĈ on 
mineral surfaces that have a maximum sorption capacity Qmax (K. Georgiou et al., 2017). Carbon 

enters the particulate organic carbon pool POĈ and the DOC pool 𝐶𝐷 in the form of litter. The POĈ 

pool is decomposed by extracellular enzymes 𝐶𝐸 that are produced by microbial biomass MBĈ. 
Microbial biomass takes up carbon for growth with carbon use efficiency CUE, while 
(1 −  CUE) × Uptake constitutes what is lost as CO2 through microbial respiration. 

 

To represent the temperature sensitivity of SOC processes, we used Q10 functions. We prescribed 

Q10 values that are based on temperature sensitivities from enzymatic assays for the 

depolymerization of organic matter in soil and Q10 values from isotherm sorption studies in the lab 

(Ahrens et al., 2020; Wang, Post, Mayes, Frerichs, & Sindhu, 2012). All microbial mediated 

processes in the model, such as depolymerization of litter, had Q10s in the range of 1.98 to 2.16: 

𝐷𝑒𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑉𝑚𝑎𝑥, 𝑇𝑟𝑒𝑓 ⋅ 𝑄10,𝑉𝑚𝑎𝑥

(𝑇−𝑇𝑟𝑒𝑓)/10
⋅ 𝑀𝐵𝐶 ⋅

𝑃𝑂𝐶

𝐾𝑀 + 𝑃𝑂𝐶
 

Here, 𝑉max ,𝑇ref
 is the depolymerisation rate at the reference temperature 𝑇ref. The term 𝑄10,𝑉max

(𝑇−𝑇ref)/10
 

scales this rate with temperature 𝑇, such that a 10 °C increase multiplies the rate by 𝑄10,𝑉max
. 
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𝑃𝑂𝐶

𝐾𝑀+𝑃𝑂𝐶
 describes substrate limitation of depolymerization with the Michaelis-Menten or half-

saturation constant 𝐾𝑀 

The Q10 values of processes related to the microbial decomposition of organic matter are generally 

higher, with values around 2, while the adsorption and desorption processes were, respectively, 

assigned a temperature sensitivity of Q10,ads = 1.08 and Q10,des = 1.34: 

𝑆𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑘𝑎𝑑𝑠,𝑇𝑟𝑒𝑓 ⋅ 𝑄10,𝑎𝑑𝑠

𝑇−𝑇𝑟𝑒𝑓

10 ⋅ 𝐶𝐷 ⋅ (1 −
𝑀𝑂𝐶

𝑄𝑚𝑎𝑥
) − 𝑘𝑑𝑒𝑠,𝑇𝑟𝑒𝑓 ⋅ 𝑄10,𝑑𝑒𝑠

𝑇−𝑇𝑟𝑒𝑓

10 ⋅ 𝑀𝑂𝐶 

Where 𝑘𝑎𝑑𝑠,𝑇𝑟𝑒𝑓 and 𝑘𝑑𝑒𝑠,𝑇𝑟𝑒𝑓 are the adsorption and desorption rates at reference temperature 

𝑇𝑟𝑒𝑓. (1 −
𝑀𝑂𝐶

𝑄𝑚𝑎𝑥
) describes the amount of free sorption sites for dissolved organic carbon (𝐶𝐷) 

4.3 EasyHybrid.jl: parameter roles and workflow 

We set up EasyHybrid.jl so that users can start from simple definitions of process-based models. 

The user can then decide which parameters are spatially or temporally varying, which parameters 

are global in space and time, and which parameters are fixed from other parameterization sources 

(e.g. literature values, previous calibrations). 

In our notation: 

• 𝜃global: global parameters, shared across all sites and time; 

• 𝜃NN(𝑋): parameters predicted by a neural network as functions of features/covariates 𝑋, 

and thus allowed to vary in space and/or time; 

• 𝜃fixed: fixed parameters taken from independent measurements, literature, empirical 

relationships or previous calibrations. 

EasyHybrid.jl provides a generic way to declare these three parameter types and to train them 

jointly in an end-to-end differentiable manner. Conceptually, hybrid modelling can be explained 

from two sides: (i) as a process-based model with machine learning embedded, or (ii) as a 

machine-learning model with a process-based model as the final layer. In the next subsection, we 

take a process-based perspective: the hybrid model is a process-based model with machine 

learning embedded to represent specific uncertain or unresolved processes/parameters. 
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4.4 Hybrid model from the process-based perspective 

We start from a purely process-based model 

𝑦̂ = 𝑀(𝑓, 𝜃global, 𝜃fixed), 

 

where 𝑀 is our SOC model, 𝑓 represents optional forcing (e.g. temperature or carbon input 

through litter), and 𝜃global and 𝜃fixed are fixed parameters defined in the notation above. 

The innovation of hybrid models lies in the realisation that for some parameters 𝜃 it is beneficial to 

make them depend on temporally and/or spatially varying features. In the past, spatially varying 

parameters such as the theoretical maximum capacity for MOC formation have typically been 

derived from quantile regression approaches and therefore calibrated outside the process-based 

models in which they are later used. 

By using differentiable programming languages such as Julia, one can instead embed a neural 

network directly into a process-based model and still rely on the optimisation techniques and data-

adaptiveness that have made machine learning so successful (Innes et al., 2019). Concretely, we 

implement a neural network 𝜃NN(𝑋) that predicts selected parameters as a function of 

features/covariates 𝑋 that may be spatially or temporally varying. This leads to the following 

definition of a hybrid model from the process-based perspective: 

𝑦̂ = 𝑀 (𝑓, 𝜃global, 𝜃fixed, 𝜃NN(𝑋)) , 

where parameters that were formerly fixed or globally estimated are replaced by a neural network 

embedded within the mechanistic model. The network maps covariates to mechanistic parameter 

values, which are subsequently used in the mechanistic model. In the next subsection, we motivate 

hybrid modelling from the machine learning perspective. There, we explain how the gradient of the 

loss between modelled and observed values is used to jointly optimize the neural-network 

parameters and the globally estimated parameters. 

4.5 Hybrid model from the machine-learning perspective 

From the machine-learning perspective, the hybrid model can be viewed as a modification of the 

pure neural network introduced in Section 2.1. Rather than predicting SOC, MOC, POC and MBC 

directly in the last dense layer, 
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𝑦̂ = 𝜃NN(𝑋) = Chain(𝐷1, … , 𝐷𝑁), 

 

we let the neural network predict the parameters of the mechanistic model as latent variables and 

append the process-based model 𝑀 as the final layer (Figure 4). 

Concretely, the last trainable layer of the neural network outputs a vector of mechanistic 

parameters 𝜃𝑀, and the hybrid model can be written as 

𝑦̂ = Chain(𝜃NN(𝑋) → 𝜃𝑀 → 𝑀(𝑓, 𝜃𝑀)), 

 

where 𝜃𝑀 denotes the mechanistic model parameters that are treated as latent outputs of the 

neural network and are subsequently passed into the process-based model 𝑀 together with 

external forcing 𝑓. 

In addition, there can be global parameters that are learned as a single value across all sites and 

known constants or parameters can be prescribed as fixed parameters. To incorporate information 

about mechanistically meaningful bounds for parameters, we use a sigmoid activation function in 

the last neural-network layer (which corresponds to the second-last layer of the hybrid model). The 

sigmoid function produces outputs in [0,1], which we then rescale to parameter-specific ranges, 

e.g. 

𝜃 = 𝜃min + 𝑠 (𝜃max − 𝜃min), 

 

where 𝑠 ∈ [0,1] is the sigmoid output. This makes it straightforward in EasyHybrid.jl to constrain 

parameters to biogeochemically plausible ranges. 

The key innovation that enabled both deep learning and hybrid modelling is also illustrated in 

Figure 1 and Figure 4. After the first forward pass through the network and the mechanistic model, 

we compute a loss that quantifies the discrepancy between model outputs and observations (here, 

the KGE-based loss described in Section 2.2). With differentiable programming, we can calculate 

the gradient of this loss with respect to all parameters. These gradients then inform the 

optimisation algorithm in which direction and by how much the parameters should be changed to 

minimise the loss function.  
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Figure 4. Hybrid model with a neural network with 𝑥𝑖 covariates/features as input and three 
exemplary output nodes – parameters of the mechanistic model, CUE (carbon use efficiency), 
𝑄max (theoretical maximum capacity for MOC formation), and other mechanistic parameters 𝜃NN. 

Together with fixed parameters 𝜃fixed and global parameters 𝜃global, all of these parameters enter 

the process-based model which predicts SOĈ, MOĈ, POĈ and MBĈ. The KGE loss function 
aggregates the discrepancies between predicted and observed values of the four targets. The 
gradients of this loss with respect to the mechanistic parameters 𝜃global and 𝜃NN (including CUE 

and 𝑄max) are passed backwards through the mechanistic model. The gradients with respect to 

𝜃NN are further passed backwards through the neural network. The optimizer adjusts the 
parameters of the neural network, the mechanistic parameters predicted from the neural network 

𝜃NN and the global parameters 𝜃global. 

 

4.6 Hybrid multi-task learning for multiple soil health indicators 

The neural network of the hybrid model saw the same predictor set 𝑋 as the pure machine-learning 

baseline (Section 3.1), but instead of directly predicting SOC, MOC, POC and MBC, it predicts 

selected parameters of the mechanistic model. The process-based model then uses these 

parameters together with external forcing variables to simulate the target variables. 

For the hybrid experiments presented here, we used the Five-pool SOC model (Section 3.5) by K. 

Georgiou et al. (2017) as the mechanistic component, with mean net primary production (NPP) and 
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mean annual air temperature (𝑇) as forcing variables. The model was calibrated against four 

targets: bulk SOC, MOC, POC, and MBC.  

The neural-network backbone was identical to the pure NN baseline (Section 3.1): an input 

normalisation layer followed by three fully connected layers with 256, 128, 64 and 32 units, 

respectively, each followed by a sigmoid activation and a dropout rate of 0.3. As before, output 

activations were passed through a sigmoid and linearly rescaled to parameter-specific bounds, 

ensuring that all predicted parameters remain within biogeochemically plausible ranges. 

To investigate how much spatial flexibility is needed in the mechanistic parameters, we 

systematically varied which parameters are treated as neural-network outputs and which remain 

global. We considered three configurations: 

• All global: all parameters of the mechanistic model were calibrated as global parameters 

(no spatial variation in 𝜃); 

• CUE, 𝑸𝐦𝐚𝐱, 𝒇, 𝑽𝐦𝐚𝐱 ,𝟎, 𝑲𝑴,𝟎 neural: in this configuration, the neural network learns carbon 

use efficiency (CUE), the maximum sorption capacity 𝑄max, and litter-quality-related 

parameters. Specifically, it predicts the litter allocation fraction 𝑓 (how much litter enters the 

POC versus the DOC pool) and the baseline depolymerisation parameters 𝑉max ,0 and 𝐾𝑀,0, 

while the remaining parameters are kept global.  

• All neural: all mechanistic parameters were predicted as spatially varying functions of 𝑋. 
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For each configuration, we split the data by site identifier into training and validation subsets to 

ensure that evaluation was performed on sites not seen during training. The hybrid model was then 

trained with the same optimisation setup as the pure neural network: RMSProp with a learning rate 

of 0.01, batch size 2048, up to 1000 epochs, early stopping with a patience of 100 epochs, and the 

KGE-based multi-task loss described in Section 2.2 (based on SOC, MOC, MBC and POC). During 

training, observations were shuffled, and additional diagnostic metrics (𝛼, 𝛽, Pearson correlation) 

were recorded for each configuration. 

 

Unsurprisingly, the All global setup did not perform well (Figure 5). Although SOC was predicted 

quite well for validation profiles (KGE = 0.46), the model performed poorly for MOC (KGE = 0.12) 

and bad for MBC and POC with negative KGE values. Even in training POC could not be 

represented well – in Figure 5, one can barely make out a prediction near 0 for all sites. It is even 

worse than using the mean which according to Knoben, Freer, and Woods (2019) would have a 

KGE of -0.41. However, this only tells us that with this model structure and current Q10, and given 

Figure 5. All global: all mechanistic parameters learned as a global parameter - performance of the hybrid 
model in training (upper) and validation (lower) for SOC, MOC, MBC and POC. KGE (Kling-Gupta efficiency) 
measures model performance as the Euclidean distance of three components - correlation r, variability ratio α, 

and bias ratio β - from the ideal point. 
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the temperature and NPP forcing, we cannot represent spatial variability across the four data 

streams with otherwise globally estimated parameters. 

In the next learning experiment, we made 𝑪𝑼𝑬, 𝑄max and litter decomposition related parameters 

𝑓, 𝑉max ,0, 𝐾𝑀,0 spatially varying (Figure 6). For all these parameters spatial variation is plausible, 

and validation performances were much better with KGEs for SOC = 0.5, MOC = 0.27, MBC = 

0.21, and POC = 0.3. These KGEs were generally quite close to the pure neural network KGEs of 

SOC = 0.6, MOC = 0.3, MBC = 0.25, and POC = 0.18. 

We saw the same pattern of overfitting of the sparser datasets, especially MBC (see Figure 6). 

Based on this we can conclude that hybrid models can generally be as performant as a pure neural 

network model. However, based on this modelling setup there also does not seem to be a 

performance advantage of hybrid models over neural networks. Our random training and validation 

split may, however, not be the right setup to let hybrid models shine. The prescribed Q10 

temperature sensitivity should become particularly advantageous if profiles are grouped into 

contrasting temperature regimes. Before using hybrid models to produce parameter maps or SOC, 

MOC, POC and MBC products in Work Package 5, we plan to test this explicitly in experiments 

stratified by temperature. 
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Figure 6. CUE, 𝑸𝐦𝐚𝐱, 𝒇, 𝑽𝐦𝐚𝐱 ,𝟎, 𝑲𝑴,𝟎 neural - spatially varying parameters - performance of the 

hybrid model in training (upper) and validation (lower) for SOC, MOC, MBC and POC. KGE (Kling-
Gupta efficiency) measures model performance as the Euclidean distance of three components - 

correlation 𝑟, variability ratio 𝛼, and bias ratio 𝛽 - from the ideal point. 
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Figure 7. All neural - all parameters are learned with a neural network as spatially varying 
parameters - performance of the hybrid model in training (upper) and validation (lower) for SOC, 
MOC, MBC and POC. KGE (Kling-Gupta efficiency) measures model performance as the 
Euclidean distance of three components - correlation 𝑟, variability ratio 𝛼, and bias ratio 𝛽 - from 

the ideal point. 

Finally, we allowed all parameters to vary spatially to see if there may be further gains in explaining 

spatial patterns (All neural, Figure 7). The validation KGEs for All neural are SOC = 0.53, MOC = 

0.23, MBC = 0.22, and POC = 0.27. Again overall, quite close to the pure neural network KGEs 

SOC = 0.60, MOC = 0.3, MBC = 0.25, and POC = 0.18. Hence, also the performance metrics of 

the CUE, 𝑸𝐦𝐚𝐱, 𝒇, 𝑽𝐦𝐚𝐱 ,𝟎, 𝑲𝑴,𝟎 neural setup (with KGEs for SOC = 0.5, MOC = 0.27, MBC = 0.21, 

and POC = 0.3) is very close to the All neural setup. This indicates that the balance between 

spatial and global parameters could either be tuned as a hyperparameter or be informed by expert 

knowledge and literature. 

As seen in the discussion between He et al. (2024) and Tao et al. (2023), it is also crucial for 

hybrid models to conduct further plausibility tests to make sure that the neural network part of the 

hybrid model did not produce parameters that give good results for the wrong reason.  

One such test could be to see if the derived parameters are internally consistent with the model 

structure. We checked if the hybrid model recovers realistic saturation behaviour of mineral-

associated organic carbon by performing a post hoc diagnosis of the fitted parameters and 
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predictions. For each site in the training data, we extracted the calibrated 𝑄max values from the 

outputs of the neural network and the corresponding predicted MOC. We then computed the ratio 

MOC/𝑄max and plot this in a histogram (Figure 8). It is evident that the calculated saturation ratios 

are unrealistic as they should never be larger than 1. This can have multiple reasons: 

• The mechanistic model structure is wrong. This would be the ideal case for testing different 

model formulations of MOC formation. In the mechanistic model that we used only the DOC 

(𝐶𝐷) pool adsorbs to mineral surface. There is, however, ample evidence that dead 

microbial biomass makes up the bulk of the MOC pool (Miltner, Bombach, Schmidt-

Brücken, & Kästner, 2012). Some models have taken this into consideration (Ahrens et al., 

2020; Wang, Huang, Zhou, Mayes, & Zhou, 2020) 

• The neural network part of the hybrid model can overwhelm the mechanistic model due its 

data-adaptiveness. Since we use a steady-state formulation, the Langmuir sorption 

constraint is no longer enforced explicitly in the optimisation. As a result, the model does 

not automatically fail when MOC exceeds 𝑄max, and unrealistic saturation ratios can occur. 

An introduction of further reality constraints such as MOC/Qmax has to be smaller than 1 or 

the DOC pool has to be small compared to the POC pool. 

This example underlines that SOC remains contentious (Lehmann & Kleber, 2015), both because 

our mechanistic understanding is still incomplete and because SOC data are inherently sparse 

compared to, for example, eddy-covariance measurements used to study ecosystem carbon 

balance. However, with a diagnosis of unrealistic behaviour of a hybrid model, it should be clear 

that one then refrains from deeper interpretation of the learned parameters, which were right for 

the wrong reason. Then the cycle of testing other model formulations, maybe adapting model 

formulations starts again.  
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Figure 8. MOC to Qmax ratio. Qmax is theoretical mineral capacity. This ratio should not be larger 
than 1. This indicates that this mechanistic model is not able to reasonably represent all soil 
organic carbon pools. 

5 Conclusion 

While the SOC case study reveals limitations of the specific process-based SOC model used in 

this study, leading to mixed performance and even unrealistic behaviour, the hybrid framework 

itself, EasyHybrid.jl, works as intended. By combining several soil health indicators such as soil 

organic carbon and microbial biomass, we have illustrated that hybrid modelling can act as the 

‘glue’ to bring several soil health indicators into one interacting and more holistic framework. The 

effects of soil microbial diversity on soil organic carbon formation and decomposition could be 

studied by using functional microbial groups as predictors for carbon use efficiency or 

decomposition rates. In the supplementary material, we present a case study on a structural soil 

health indicator—plant-available water capacity—and quantify how strongly soil organic carbon can 

influence this indicator. This also further illustrates the potential of EasyHybrid.jl under a simpler 

and better constrained process model and with abundant data (see Supplementary material). 
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Supplementary section: parameter learning for the influence 

of organic carbon on soil water retention curves 

To test the hybrid framework in a setting with richer data and a simpler process description than 

SOC formation and decomposition, we applied it to soil water retention curves and derived the 

effect of soil organic carbon on plant-available water capacity. For this, we used the Lebeau–

Konrad (LK) model as a mechanistic description of the soil water retention curve 𝜃(ℎ), where ℎ is 

the matric potential and the parameters 𝜃𝑠, ℎ𝑚, 𝜎, 𝜃𝑜, ℎ𝑑 control the capillary and adsorptive 

domains of soil water storage (Norouzi et al., 2022). Here, we show the actual code to illustrate 

how easy it is to train hybrid models in EasyHybrid.jl in three steps: 

 

Figure 9. Step 1 in EasyHybrid.jl: Define the mechanistic model. Shown is Konrad-Lebeau soil 
water retention curve model (mLK) that separates water contents 𝜃 into the adsorptive water 

content 𝜃𝑎 and the capillary water content 𝜃𝑐. In the bracket behind mLK, the parameters and 
forcing of the model are given as keyword arguments. h is the matric potential, 𝜃𝑠 is the saturated 

volumetric water content, ℎ𝑚 is the matric potential that corresponds to the median capillary pore 
radius, sigma is the standard deviation of the log-transformed capillary pore radius distribution, and 
𝜃𝑜 is a fitting parameter. erfc is the complementary error function. Besides water content 𝜃𝑠 all 
parameters and intermediate variables are returned. 

In Step 2, we define the hybrid model, i.e. the structure of the neural network and the parameter 

roles: which parameters are learned as spatially varying functions of the predictors 𝜃NN(𝑋), which 
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are learned as a single global value 𝜃global, and which are kept fixed 𝜃fixed.

 

Figure 10. Step 2 in EasyHybrid.jl: Define the hybrid model. Decide which predictors should be 
used – here clay, silt, sand, and soil organic carbon content. The measured matrix potential ℎ is 

used as forcing. Soil water content 𝜃 is the variable that will be used as target/data to learn the 
parameters. We pass the name of the mechanistic model and upper and lower bounds for the 
parameters. Decide which parameters should be learned as a function of the predictors (neural 
parameter names) and which parameters should be learned as a global coefficient. The rest of the 
arguments describe the number of hidden layers and neurons that should be used. Finally, the 
activation function introduces non-linearity in neural networks. 

In the last step 3, we train this hybrid model with function arguments that are very similar to 

classical machine learning: 

 

Figure 11. Step 3 in EasyHybrid.jl: train the hybrid model. In the train function, one passes the 
name of the hybrid model and the dataset as a tabular dataframe. One then decides how many 
iterations/epochs should be used, the size of a batch of data that the optimizer Adam sees in one 
gradient calculation.  

The training dataset consisted of measured water contents at several matric potentials per horizon, 

together with the corresponding soil texture, bulk density and soil organic carbon content. It comes 

from a collection of soil samples in Denmark and is described in detail in Norouzi et al. (2025). This 

yielded multiple pairs of soil matrix potential and soil water content per horizon. The hybrid model 

predicts soil water content in each horizon, and the high modelling efficiency/R² of the validation 

set shows that the parameters could be learned very well (Figure 12). 
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Figure 12. Model performance in training and validation in a random per-profile split into training 
and validation set. The performance is comparable to a non-parametric physics-informed neural 
network with an overall modelling efficiency of 0.92 for the same dataset (Norouzi et al., 2025). 

After training, the hybrid model can be used to calculate secondary hydraulic indicators. Here we 

focus on plant-available water capacity (AWC), defined as the difference between volumetric water 

content at field capacity and at the permanent wilting point: 

AWC = 𝜃(pF = 1.8) − 𝜃(pF = 4.2). 

 

This can be calculated by evaluating the trained hybrid model at two matric potentials (pF 1.8 and 

4.2) for each soil and subtracting the predicted water contents from each other. Because the hybrid 

model is differentiable with respect to its parameters and has a smooth soil water potential, the 

resulting AWC is internally consistent with the underlying retention curve. 

Finally, we used Shapley values to interpret the hybrid AWC predictions. Using the ShapML 

package, we created Shapley dependence plot for soil organic carbon for two training experiments. 

In one experiment, we used SOC, clay, silt and sand as predictors, in the other one we added bulk 

density. The latter shows an even slightly better validation performance with a modelling 

efficiency/R² of 0.934. Using only SOC, clay, silt and sand soil organic carbon shows a strong 

effect on changes in AWC, while when we add bulk density this effect of soil organic carbon on 

AWC is much reduced. Here, however, one has to keep in mind that bulk density and SOC are 

intimately linked. Increasing soil organic carbon can reduce bulk density and increase porosity (see 

Lebeau-Konrad model). This link has been studied with mechanistic models (Robinson et al., 

2022) and could provide a useful connection between different soil health indicators when they are 
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combined in a mechanistic framework, with hybrid components acting as the glue that links the 

individual components together. 

 

Figure 13. Shapley importance plots for the effect of soil organic carbon (OC Weight%) on plant 
available water (absolute change in volumetric water content in percentage.). A with only SOC, 
clay, silt and sand as predictors. B SOC, clay, silt, sand and additionally bulk density. Note the 
different y-scales. 
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